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Abstract
Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying

disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the
disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that
preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the
tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene
expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis
decisions. Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue
gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the
most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes by using
publicly available gene expression profiles across multiple sources. We found that using the full gene set
improves correlations between preclinical model and tissue global gene expression profiles, confirmed that
GBM PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line
to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often
failed to reproduce tissue-specific expression. While including additional genes for global gene expression
comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank
between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance
of using the full gene expression set measured when comparing preclinical models and tissues and confirm
that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. Future studies
can build on these findings to determine the specific pathways and gene sets recapitulated by particular
preclinical models to facilitate model selection for a given study design or goal.
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1. Introduction
In vitro preclinical models like cell lines and patient-derived xenografts (PDXs) are critical for advancing

oncology studies but have limitations in how well they recapitulate human disease gene expression patterns
and perform in the lab.(1) For example, cancer cell lines are generally less expensive to acquire and maintain,
are more readily available from repositories, are more easily genetically manipulated, and have higher
proliferation rates than PDXs.(2) However, because cancer cell lines are homogeneous, they fail to recapitulate
disease and tissue heterogeneity and the microenvironment.(2) Additionally, over time, cancer cell lines are
prone to mislabeling, cross-contamination, and contamination by chemicals (e.g., endotoxins, impure media) or
biological entities (e.g., mycoplasma, bacteria, yeast).(3) In contrast, PDX models contain an in vivo
microenvironment, are heterogenous, and have been shown generally to better match the patient’s tumor
profile than cell lines.(4) In regards to both model types, the process and method of culturing can influence cell
gene expression patterns.(5) As resources like the CelloSaurus and groups like the International Cell Line
Authentication Committee continue to identify preclinical models that, through authentication testing, have
been determined to be likely misidentified or contaminated, studies must continue to re-evaluate which
preclinical models should be used in research.(6)

However, despite demonstrating efficacy in preclinical model systems like cancer cell lines and PDXs,
most novel cancer drugs fail in clinical trials. Of all oncology drugs entering Phase I clinical trials, only 5% are
approved. The main bottleneck of drug failure is in Phase II of clinical trials, suggesting that preclinical model
systems are effective in predicting human drug toxicity (Phase I), but fail to accurately recapitulate many
diseases for the sake of drug testing (Phase II).(7,8) Further, previous studies suggest that cancer cell lines
often do not accurately represent the transcriptomic profile of their tissue or disease of origin, or that they may
be better surrogates for particular cases, such as primary versus secondary tumors, or for a particular
molecular pathway.(9,10) While disease and genetic background heterogeneity in humans and system or
microenvironmental effects contribute to this, a better understanding of how cancer cell line or PDX model
gene expression profiles recapitulate the human tumor or non-diseased tissue being modeled is critical.

Here we evaluated how restricting to the most variable genes impacts how well cancer cell lines or
glioblastoma (GBM) PDX global gene expression profiles correlate with human tissue gene expression profiles.
We used gene expression profiles from the Cancer Cell Line Encyclopedia (CCLE, n = 943),(11) the Human
Protein Atlas (HPA; n = 194),(12) a publicly available osteosarcoma and bone sample set (SRP090849, n =
212),(13) GBM PDXs from the Mayo Clinic Brain Tumor PDX National Resource (n = 65),(14) The Cancer
Genome Atlas (TCGA, n = 10,098)(15), and Genotype-Tissue Expression project (GTEx, n = 17,510)(16). We
further investigated whether the inclusion or exclusion of tumor purity-correlated genes impacts those
correlations and the ability of the preclinical models to capture tissue-specific gene expression signatures. Our
findings illustrate that while GBM PDX samples outperformed GBM cancer cell lines concerning both tissue
and disease context of origin, cell lines better model tissues of different origins, further underscoring that PDX
models more faithfully capture tissue and disease-specific gene expression profiles. The degree to which either
model captured the gene expression profile of the same tissue of origin, however, varied as expected
depending on the gene set included when gene subsets were used. We find that it is generally best to assess
global profiles, but if considering based on a smaller subset, like a specific pathway, it may be best to focus
more consideration on this gene set of interest for informed decision making.

2. Methods
2.1 Data Collection
All analyses were conducted using the R programming language (version 4.2.2) within the RStudio interface
(version 2022.02.01+461). We used the Recount3 R package to access publicly available RNA-seq gene
counts (version 1.4.0)(17) GENCODE version 26 annotations (n=63,856 genes). All included data were
originally generated using either an Illumina Genome Analyzer or HiSeq instrument. Data accessed through
Recount3 was previously preprocessed with the Monorail pipeline, which facilitates comparison between
cohorts and minimizes batch differences.(17) For this study, we used data from human tumor and
non-diseased tissues, cell lines, and patient-derived xenograft (PDX) mouse models. Human tissue profiles
were from The Cancer Genome Atlas (TCGA, n = 10,098 across 33 cancer types)(15), a publicly available
osteosarcoma tissue data set (SRP090849; osteosarcoma n = 188, non-diseased bone n = 9)(13) to provide a
bone tissue comparison for bone tissue-derived cell lines in subsequent analyses, the Genotype-Tissue
Expression (GTEx) Project (n = 17,510 across 30 tissue types),(16) and the Human Protein Atlas (HPA, n =
171).(18) We sourced cell line gene expression data from the Cancer Cell Line Encyclopedia (CCLE, n =
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1,004),(11) the HPA (n = 23),(18) and SRP090849 (bone-derived cell lines, n = 15).(13) In total, this data
included 64 different cancers derived from 41 tissues. Finally, we sourced GBM PDX gene expression data
from the Mayo Clinic’s Glioblastoma PDX National Resource (n = 65).(14)

2.2 Data Curation
We excluded some samples from subsequent analyses based on mislabeling or possible contamination
(Supplemental Table 1). To avoid possibly confounding our analyses, we excluded the GTEx samples marked
as bone marrow as they are derived from a leukemia cell line. Five HPA non-diseased tissue samples
(ERR315357, ERR315383, ERR315386, ERR315403, and ERR315438) were relabeled as well for metadata
consistency. We selected primary tumor samples within the TCGA dataset. We also confirmed that each CCLE
cell line had not been flagged as having evidence of contamination or misidentification in The Cellosaurus, a
Swiss Institute of Bioinformatics resource for biomedical cell lines.(6) From this assessment, we removed 66 of
the CCLE cell lines from our analysis,(6) as well as one additional sample (SRR8615727) which was missing
significant portions of its metadata, including which cell line it was derived from. We also relabeled 4 HPA cell
lines (SRR629581, SRR629582, SRR4098609, and SRR4098610) for metadata consistency in subsequent
analyses. We removed one PDX sample (SRR9294079) as it is IDH-mutant and no longer classified as GBM
by the World Health Organization as of 2021.(19) ​

2.3 Data Categorization
In order to match preclinical models to corresponding tissues for cross-disease and cross-tissue comparisons
we assigned preclinical models by their putative tissue of origin (Supplemental Tables 2 and 3). For example,
all leukemia-derived cell lines regardless of subtype were grouped as “Blood Cancers”. With these
adjustments, all cell lines were identified as part of a parent tissue group. However, some supplementary
tissues (i.e., those without corresponding preclinical models in our analyses) were also included to further
evaluate model performance in contexts separate from their origins (e.g., GBM cell lines and PDXs evaluated
for their correlation to other non-brain tumor tissue types).

2.4 Data Normalization
From raw counts, we calculated transcripts per million (TPM) using the gene lengths available in the
Recount3-downloaded ranged-summarized experiment (RSE) object with merged Ensembl/Havana
GENCODE version 26 annotations(20) via the getTPM() function of the recount R package (version 1.20.0) to
facilitate a comparison of the proportion of total reads mapped to a gene across samples.(21)

2.5 Gene Subsets
Previous studies evaluating gene expression differences between cell lines and tissues by restricting to the
5,000 most variable genes(9,10,22,23) suggest this subset represents the most “likely biologically
informative”(9,10) or representative signal.(22,23) This restriction of the global gene set may be useful for
reducing computational memory requirements and run times, but research is limited on biological information
gained or lost with varying gene subsets. We evaluated the difference in variability across samples by gene set
size with principal component analysis (PCA) with the mixOmics R package (version 6.18.1) pca() function to
determine principal components,(24) and then used the PLSDAbatch package (version 0.2.1)
Scatter_Density() function to generate PCA and density rugplots to investigate the variance between sample
origin types (i.e., cell line, PDX, non-disease tissue, tumor tissue; between brain-derived tissues and
GBM-derived models in Figure 2B; between all samples of all sources in Supplemental Figure 1A), as well as
with respect to other variables that may impact variance (i.e., read length, tissue type, sample source, sex;
Supplemental Figure 1B-E).(25)
We identified tumor purity-correlated genes based on TCGA tumor gene expression significantly correlated
with ABSOLUTE-generated tumor purity. We also defined tissue-specific gene expression from GTEx using the
Harminozome (accessed November 2022).(16,26,27) We chose this resource due to its breadth of
tissue-specific gene sets available across various tissues.

2.6 Correlation & Pathway Analysis
We used Spearman’s rank correlation with the cor() function of the stats base R package(28) to evaluate
model performance in recapitulating tissue gene expression patterns (Supplemental Table 4). We visualized
the correlation distributions with the hist() function in the graphics base R package (GBM cell lines correlated to
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brain tumor tissue: Figure 5A; all other groups: Supplemental Figure 2).(28) We computed the significance
between correlation performance using the Wilcoxon rank sum test using the rstatix (version 0.7.0) and coin
(version 1.4-2) R packages.(29–31) We studied their performance within many sub-groups. To investigate
pathway enrichment of genes highly and lowly correlated and anticorrelated between brain-derived models and
brain tumor and non-diseased tissue used the gprofiler2 R package (GOSt results for these gene groups are in
Supplemental Table 5).(32) We generated visualization of correlations, pathways, and all other figures using
the ggplot2 (version 3.3.5), ggpubr (version 0.4.0), ComplexHeatmap (version 2.10.0), mixOmics (version
6.18.1), and PLSDAbatch (version 0.2.1) R packages and compiled with BioRender.(24,33–37)

3. Results
3.1 The correlation between cancer cell line and tissue of origin gene expression when restricting to the most
variable genes is reduced and less specific compared to the full gene expression profiles

Previous studies evaluating gene expression differences between cell lines and tissues by restricting to
the 5,000 most variable genes(9,10,22) suggest this subset represents the most biologically informative
signal.(10) We evaluated how the gene subset size impacts the correlation between cancer cell line and tumor
tissue gene expression profiles originating from the same tissue type (i.e., with matched origin tissue). From
CCLE,(11) HPA,(12) and SRP090849(13) cancer cell line gene expression profiles, we calculated their global
Spearman correlation to the corresponding non-diseased tissue (GTEx,(16) HPA, SRP090849) or tumor tissue
profiles (TCGA,(15) SRP090849). For this analysis, we determined the 100, 1,000, 5,000, and 10,000 most
variable genes across all included TCGA tumor tissue samples or GTEx non-diseased tissue samples. We
then evaluated how restricting each of those subsets of genes, impacted the correlation between cancer cell
lines and matched tissue types compared to the global profile (n = 63,856 genes) (Figure 1A). We also
evaluated including or excluding previously identified high tumor purity-correlated genes (i.e., TCGA tumor
gene expression significantly correlated with ABSOLUTE-generated tumor purity).(10,38,39)

Compared to the median correlation between the cancer cell lines and their matched tumor tissue in the
global gene profile (rho = 0.82) (Supplemental Table 4), the 100 most variable gene subset based on TCGA
variance, including tumor purity-associated genes, had the highest median correlation value (rho = 0.73).
However, the 5,000 most variable gene subset based on TCGA variation, excluding tumor purity-associated
genes, had the lowest correlation value (rho = 0.47). The median correlation rho between cancer cell lines and
matched tumor tissue in the 5,000 most variable genes excluding tumor purity-correlated genes, was 0.05
greater in GTEx-derived variation than in TCGA. Therefore, we found that restricting to the most variable
genes reduces the cell line-to-tissue of origin correlation and that cell lines generally correlated more to the
same tissue they were derived from when using the most variable genes based on GTEx samples. Further,
while excluding purity-associated genes improved the correlation for gene sets based on the most variable
GTEx genes, it did not for the most variable genes across TCGA samples (Figure 1A). As expected, the
purity-associated genes were the most correlated between cell lines and tumor samples due to the non-tumor
cells within the sample.(39)

We also evaluated the percentage of cancer cell lines that correlated most highly with their own
matched tissue of origin compared to all other tissues included in this study (i.e., both cancer- and
non-disease-derived tissues). Intriguingly, even though cancer cell line model gene expression profiles were
most strongly correlated with their tissue of origin when only the top 100 variable genes were included (Figure
1A), very few correlated most highly with their tissue of origin when compared to any tissue (i.e., 0% and 0.1%
when the variable genes were selected based on TCGA and tumor purity-correlated genes were included and
excluded, respectively; 1% when the variable genes were selected based on GTEx, regardless of the inclusion
of tumor purity-correlated genes). Further, while 20% of cell lines correlated most highly to tumor tissues of the
same origin with the global gene expression profile, that percentage was higher in all gene subsets greater
than 100 except for in the 1,000 genes based on TCGA variation with tumor purity-correlated genes included
(Figure 1B). That is to say, while cell lines had higher correlation rho values within smaller subsets of top
varying genes, they had less specificity to their origin tissue.

We further investigated the effect of these different gene subsets on the correlation of cell lines to
tissues at the individual tissue level, to see if these trends were consistent across tissues or tissue-specific
(Figure 1C). We observed that some tissue types had less variation in their global gene expression correlation
to cancer cell lines from that same tissue type regardless of gene subset size, GTEx or TCGA tissue gene
expression most variable gene subsetting, or purity gene inclusion. That is, certain tissues consistently
correlated highly (e.g., skin) or lowly (e.g., brain) with cell lines from their matched origin regardless of subset.
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For example, when comparing most variable genes based on GTEx or TCGA, the difference between the
median correlation of all of the most variable gene set correlations (i.e., all subset sizes, tumor purity gene
inclusion/exclusion) was ~0.01 for soft tissue cancer-derived tissue (i.e., soft tissue/connective tissue cancer,
sarcomas; rho values ranged between 0.53 and 0.67) and ~0.02 for bone and brain cancer-derived tissue (rho
values ranged between 0.64-0.79 and 0.53-0.71, respectively). However, the difference in rho was at least 0.1
in 14 of the 22 tumor tissue types we analyzed. This suggests that for many tissues, how the most variable
genes are defined for the purpose of comparing cancer cell lines to tumor tissues from the same tissue of
origin impacts the results. Based on these findings, for subsequent analyses, we included all genes.

Figure 1. A. Line graph of the difference in median correlation of cell lines to their matched origin tumor tissue
based on the set size of most variable genes, whether that variation is based on GTEx (red) or TCGA (blue)

most variable gene subsetting, and whether tumor purity-correlated genes are included (solid line) or excluded
(dashed line). Global correlation is represented as a gray solid line. B. Percent of cell lines that correlate
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highest with their matched origin tumor tissue out of all tumor and non-diseased tissues included based on the
set size of the most variable genes, whether that variation is based on GTEx (red) or TCGA (blue) tissue

variation, and whether tumor purity-correlated genes are included (solid line) or excluded (dashed line). Global
correlation is represented as a gray solid line. C. Heatmap of cell line median correlation to their matched

origin tumor tissue based on the set size of most variable genes, whether that variation is based on GTEx or
TCGA tissue variation, and whether tumor purity-correlated genes are included.

3.2 Global gene correlations between GBM models and brain tissues underscore GBM PDX gene expression
specificity and GBM cell line gene expression ambiguity

We next correlated GBM cell line and PDX gene expression profiles to brain cancer and non-diseased
brain tissue profiles. Principal component analysis (PCA) demonstrated that principal component 1 (39% of the
variance) and principal component 2 (15% of the variance) separated non-diseased brain tissue from GBM
PDXs, GBM cell lines, and brain tumor tissue (Figure 2A). To evaluate how well the GBM PDXs and cell lines
recapitulated GBM-specific, brain tumor-specific (i.e., GBM and lower-grade glioma, LGG), and brain
non-diseased tissue gene expression profiles, we compared the median correlation rho values for each (Figure
2B). We found that GBM PDX models best correlated to brain tumor tissues, and both GBM cell lines and PDX
models correlated better to tumor tissue than non-diseased tissue. We found that, though within a modest
correlation range (all samples of both models’ median correlations to either tissue type were between
Spearman rho = 0.77-0.89) PDXs significantly correlated more to brain tissue, both tumor and non-diseased,
than cell lines (p < 0.0001 and W = 410 when correlated to brain tumor tissue, p < 0.0001 and W = 455 when
correlated to brain non-diseased tissue, Figure 2C). Finally, we asked how well GBM PDX and cell line global
gene expression profiles correlated to other tumor and non-diseased tissues from TCGA and GTEx because
other studies have suggested cell line gene expression profiles may better resemble other tumor types than
the one from which they were originally derived.(40) Here, we found that the GBM cell lines correlated
significantly better to non-brain tissues than the GBM PDX gene expression profiles did (Bonferroni-corrected
Wilcox p-value < 0.05, Figure 2D) in every comparison with the exception of two tumor tissues (i.e., adrenal
and eye), and five non-diseased tissues (i.e., pituitary, colon, nerve, testis, and ovary). This suggests that the
GBM PDXs better recapitulate their tissue of origin global gene expression patterns and that the GBM cell line
global gene expression profiles are less tissue-specific and therefore correlate better with both cancer or
non-diseased tissues different from their own origin than the PDX models.
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Figure 2. A. Principal component analysis scatterplot with density rug plot of gene expression profiles from
GBM cell lines (red), GBM PDX models (teal), non-diseased brain tissue (green), and GBM and LGG tissue

samples (purple). B. Heatmap of median performance of each GBM cell line and PDX sample to brain
non-disease, GBM tumor, and all available brain tumor (GBM, LGG) tissue. C. Violin plot showing median

correlation of each GBM cell line and PDX sample to brain tumor (left) and non-diseased (right) tissue split by
model type. Significant Wilcox p-value (p < 0.05) indicated by asterisks. D. Split violin plot of correlation of each
GBM cell line and PDX sample to the tumor (top) and non-diseased (bottom) tissues. Wilcoxon rank sum test
with Bonferroni procedure for multiple hypothesis correction, p-adjusted values < 0.05 indicated by asterisks

and colored by model type with significantly greater median correlation.

3.3 Models often fail to recapitulate origin tissue expression of tissue-specific genes
Given the importance of tissue specificity to model gene expression fidelity, we further considered how

well cell lines recapitulated their matched tissue of origin (in non-diseased and tumor contexts) when
subsetting gene expression profiles to tissue-specific genes for each respective tissue. Here we defined genes
as having tissue-specific gene expression based on prior work identifying genes with either high or low gene
expression in each tissue relative to all other tissues in the GTEx dataset.(16,27) For each tissue, we
calculated the correlation between the gene expression of that tissue’s tissue-specific genes in cancer cell lines
derived from that tissue to the non-diseased gene expression profiles of that tissue and cancer gene
expression profiles of that tissue (Figure 3A). In 14 out of 16 tissues, the tissue-specific gene expression
correlation is higher between cancer cell lines and tumor tissues than between cancer cell lines and
non-diseased tissue for that tissue (Bonferroni-corrected Wilcoxon p < 0.05).

We next studied the performance of the 100 cancer cell lines with the highest median global gene
expression correlation to all studied tissue and disease contexts with respect to a given tissue’s tissue-specific
genes. When visualized as a heatmap of the cancer cell lines’ correlation to each tissue and disease context
for that tissue’s tissue-specific genes (Figure 3B), we found there were subclades of some cancer cell lines
from the same tissue of origin clustering together (e.g., some brain-derived and liver-derived cell lines), but, as
noted in previous studies, this was not widespread.(41) Some tissues clustered by tumor or non-diseased
state, though again not all (e.g., within the first split of the dendrogram, eight of the ten tissues were
tumor-derived, but the other two were non-diseased prostate and bladder). Though cell lines included here
were derived from 25 different tissues, all of the top 100 cancer cell lines, regardless of origin, correlated highly
(rho > 0.72) with kidney, breast, skin, thyroid, ovary, pancreas, uterus, and bladder tumor tissue as well as
prostate and bladder non-diseased tissue. Further, all included cancer cell lines correlated less with brain, lung,
blood, and stomach non-diseased tissue (rho < 0.66). As cancer cell lines were more correlated on average to
tumor gene expression profiles, this further underscores that tissue status (i.e., from a tumor or non-diseased
tissue) is a critical driver of how well a cancer cell line’s global expression profile correlates with that tissue.
These tissues had low variation in the strength of correlation across cell lines (e.g., bladder non-diseased
tissue had a difference of 0.04 between the lowest and highest correlation rhos); however, a few tissues, such
as colon tumor and non-diseased esophagus, had higher variation in how well they correlated with the 100
tested cancer cell lines (i.e., the difference between lowest and highest correlation rho between cell line and
tissue for colon tumor and non-diseased esophagus were 0.25 and 0.22, respectively). Further, 18 of 35
tissues had a difference between their lowest and highest rho correlation value of at least 0.1. Colon tumor
samples predominantly correlated highly with colon-derived cell lines; all 6 of the colon-derived cell lines
correlated highest to colon tumor tissue (rho > 0.7). However, other tissues, including pancreatic tumor tissue,
had less specificity and correlated highly with cell lines across origins. Only 3 of the 6 pancreatic tumor-derived
cell lines included were in the top 15 rho values of pancreas tumor tissue’s correlation to cell lines, while the
lowest correlation between pancreas tumor tissue and pancreas tumor-derived cell line was the 36th highest
rho value at rho = ~0.81, and no correlation to pancreas tumor tissue out of any of the 100 cell lines was lower
than rho = ~0.75. Ovary tumor tissue correlated highly with all of the top 100 cell lines (the lowest rho was =
~0.82), and with minimal specificity to cell lines of the same origin; while 10 of the 19 ovary cell lines were in
the top 15 rho values of ovarian tumor tissue’s correlation to cell lines, one of those 19 was ranked 95th for its
strength of correlation (rho = ~0.825). This supports that some tissues are more broadly recapitulated by
cancer cell lines regardless of the cell lines’ origin, while others have greater specificity, whether that be to cell
lines derived from the same matched tissue or a specific set of tissues.
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Figure 3. A. Violin plots of the median correlation of each cell line sample to its matched tumor
(orange) and non-diseased (dark blue) tissue in each matched tissue’s specific genes. Wilcoxon rank sum test
with Bonferroni procedure for multiple hypothesis correction, p-adjusted values < 0.05 indicated by asterisks
and colored by tissue type with significantly greater median correlation. B. Heatmap of correlation of the top
100 most generally highly correlated cell lines to each tumor and non-diseased tissue by tissue-specific genes.

We again focused on GBM cell lines and PDXs and found that while GBM PDXs were more correlated
to both brain-derived tumor and non-diseased brain tissue than GBM cell lines in the global profile (Figure 2C)
when restricted to tissue-specific genes, this difference was even greater (median Spearman correlation rho of
PDX gene expression to tumor gene expression and to non-diseased brain tissue gene expression was 0.126

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.04.11.536431doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.536431
http://creativecommons.org/licenses/by-nc/4.0/


and 0.155 greater than to the GBM cell lines, respectively) (Figure 4A). This difference is mainly due to GBM
cell lines having a reduced correlation to brain tumors and brain tissues when subsetting for brain-specific
genes rather than full gene profiles, similar to what we previously found with varying gene set sizes (Figure
1A). We then asked how our GBM models correlated to non-brain tumors and tissues based on each tissues’
tissue-specific genes to assess how specific models are to their origin disease and tissue contexts (correlation
to tumor tissue: Figure 4B; correlation to control tissue: Supplemental Figure 2). We again found that
brain-derived cancer cell lines better recapitulated gene expression of other tissues compared to GBM PDX
models, but there was more variability here than compared to the full global gene expression profile. The range
of median correlation to each tumor tissue for GBM cancer cell lines was 0.54-0.85 and for GBM PDXs was
0.46-0.88 using tissue-specific genes (Figure 4B), while in the full gene set median correlation for cancer cell
lines was 0.75-0.86 and PDXs was 0.71-0.89 (Figure 2D). We concluded that PDX models’ ability to
recapitulate tissues’ gene expression may be more origin context-specific (i.e., origin disease and tissue), while
cell lines’ ability to recapitulate tissues’gene expression may be more ambiguous, recapitulating across
non-origin tissues and correlating higher when not considering tissue-specific genes vs. global gene profiles.

Figure 4. A. Violin plots with Wilcoxon test showing the median correlation of each GBM cancer cell line and
PDX sample to brain tumor and non-diseased brain tissue with brain-specific genes. Significant Wilcox p-value
(p < 0.05) indicated by asterisks. B. Split violin plots of the correlation of each GBM cancer cell line and PDX

sample to each tumor tissue type by that tissue’s specific genes. Wilcoxon rank sum test with Bonferroni
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procedure for multiple hypothesis correction, p-adjusted values < 0.05 indicated by asterisks and colored by
model type with significantly greater median correlation.

3.4 Gene ontology analysis of genes significantly correlated and anti-correlated between brain-derived models
and brain tissue gene expression

Having assessed the gene expression correlation of cell lines and PDXs to matched tumors and tissues
by global profiles and multiple subsets of genes, we then asked which genes in particular are successfully or
unsuccessfully recapitulated by included GBM-derived models in comparison to brain tumor or non-diseased
tissue, and if these genes are enriched for any pathway or biological terms. To do this, we determined which
genes were highly or lowly correlated or anticorrelated between GBM models and brain tumor or non-disease
tissue gene expression profiles (Figure 5A; Supplemental Figure 3), and if any terms were overrepresented
within these sets using g:Profiler (Supplemental Figure 4; Supplemental Table 5).(42) We found that most
genes significantly correlated between GBM cell lines and brain tumor or non-diseased tissues did not overlap
with genes significantly correlated between GBM PDXs and brain tumor or non-diseased tissues (Figure 5B;
Supplemental Table 5). We found some of the genes significantly correlated between GBM models that were
exclusive to either PDXs or cell lines were transcription factors, including DACH2, ELK3, FEV, GTF2H2B,
KLF10, MAFK, REST, SALL4P5, and TFB1M, specific to PDXs and HSFX4, HSFY8P, MITF, MYCN, SP2, and
YY2, specific to cell lines. The top terms significantly enriched for each group were unique to a given
comparison (Figure 5C; Supplemental Table 5). When evaluating between GBM cell lines and brain tumor
tissue, we found that cellular response to heat shock terms were overrepresented in correlated genes, while
terms related to immune response (e.g., NF-kappaB complex, Innate Immune System, Neutrophil
degranulation) were overrepresented in anticorrelated genes (Figure 5C; Supplemental Table 5). Between
GBM cell lines and non-diseased brain tissue gene expression, highly correlated genes were, surprisingly,
overrepresented for oxidative phosphorylation and related terms (e.g., respiratory chain complex), and
anti-correlated to cellular and anatomical development and cellular motility (Figure 5C; Supplemental Table 5).
The terms significantly enriched in the correlated gene set between GBM PDXs and tumor brain tissue varied
widely, from Bardet-Biedl syndrome, microtubule cytoskeleton, “skin 1; Langerhans”, to exercise-induced
circadian regulation. The anticorrelated gene set had top enriched terms for oxidoreductase activity and
metabolic pathways (daunorubicin metabolic pathway, polyketide metabolic process, etc.) (Figure 5C;
Supplemental Table 5). Gene sets significantly correlated between non-diseased brain tissue and the GBM
PDXs included cell-cell signaling and synaptic signaling. The terms from the significantly anticorrelated gene
set included mostly metabolic pathways (e.g., cholesterol biosynthesis, alcohol biosynthetic process, and
steroid biosynthesis). Our results here suggest that cell lines and PDX models recapitulate disease contexts in
unique biological terms and pathways, and, further, uniquely fail to capture other specific biological terms and
pathways.
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Figure 5. A. Histogram of the distribution of Spearman’s correlation between GBM cell lines and brain tumor
tissue and the separation into groups by positive rho (i.e., correlated) or negative rho (i.e., anticorrelated) as

well as the p-value (i.e., p ≥ 0.05 is insignificant, p < 0.05 is significant). B. Venn diagrams with the number of
genes significantly correlated (top of each diagram, denoted by “+”) or anti-correlated (bottom of each diagram,
denoted by “-”) between GBM models (cell lines on the left, PDXs on the right) and brain tumor (top diagram)

and non-diseased (bottom diagram) tissue. C. Dot plots of the most significant (top 10 if at least 10 were
significant) pathways represented in significant genes with either positive (blue) or negative (red) correlation
between, clockwise from top left, GBM cell lines and brain tumor tissue, GBM PDXs and brain tumor tissue,
GBM PDXs and brain non-diseased tissue, and GBM cell lines and brain non-diseased tissue, respectively.
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Dots are sized by recall or the proportion of genes from a specific term represented in the data divided by the
total genes possible for that term.(43)

4. Discussion
In this study, we evaluated how well cancer cell lines derived from many different tissues recapitulate

human tissue expression patterns across different contexts (i.e., tissue, disease) and concerning gene
inclusion (i.e., most variable genes, purity associated genes, tissue-specific genes). We also performed
additional analyses in GBM models, given the availability of GBM PDX gene expression profiles. We found that
using the full gene expression profile improves correlations between preclinical model and tissue global gene
expression profiles, confirmed that GBM PDX global gene expression correlation to GBM tumor global gene
expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated
that preclinical models in our study often failed to reproduce tissue-specific expression. While including
additional genes for global gene expression comparison between cell lines and tissues decreases the overall
correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues.

Previous studies have sought to prioritize cell lines for disease recapitulation by correlating the tumor
type of interest to cell lines by the 5,000 most varying genes across samples, typically reasoning that this
subset of genes are likely to be biologically informative.(9,10,22) For this reason, we investigated how
correlation values change across gene subsets of various sizes and how they compared to using the entire
gene set (Figure 1). Further, we are not aware of any similar studies that have attempted to prioritize cancer
cell lines by the fidelity of the gene expression profile compared to non-diseased tissues. However, we suggest
that comparison of cell lines to non-diseased tissues is important for selection of preclinical models that may
better recapitulate non-cancer disease contexts, considering genetic drift and other abnormalities of
tumors.(44,45) We found that by using subsets of the most varying genes (i.e., 100, 1,000, 5,000, and 10,000),
cell lines generally correlated less to their tissue of origin (both tumor and non-diseased), and yet that the full
gene sets correlated higher than any varying gene subset (median correlation rho = 0.82) (Figure 1A).

Celligner (previously developed by the DepMap team) is a method that uses an unsupervised
alignment approach to compare protein-coding gene expression of cell lines to tumor tissues to correct for
differences in tumor compared to cell lines. They found that cell lines matched closest to their disease of origin
(e.g. kidney tumor-derived cell line matching best to their kidney tumor cluster) 57% of the time.(40) Other
studies correlating gene expression of cell lines to tumors by the 5,000 most varying genes found only 8 out of
22 tumors correlated highest with cell lines derived from the same tumor type.(10) Similarly, we found only
~32% of cell lines matched first to their disease/tissue of origin (Figure 1B). However, the proportion of cell
lines matching best to their disease/tissue of origin increased with increasing varying gene subset size, with
the exception of the full gene set, which only correlated higher than the top 100 varying gene subset. This is
surprising compared to the trend we saw when comparing median correlation values of cell lines to their origin
tissues, and shows that the highest correlation may not necessarily show the best recapitulation of the
disease/tissue it was derived from (e.g., while the top 100 varying genes were most highly correlated between
a cell line and its disease origin tissue, it may still correlate higher with a different disease/tissue). We further
considered the specific tissues and compared the correlations of these gene subsets by each tissue and
disease context, finding that the impact of gene subset on correlation varied by tissue (Figure 1C). Certain
tissues consistently correlated highly across subsets (e.g., skin), while others consistently correlated lowly
across subsets (e.g., brain). However, other tissues’ correlation rho values varied greatly to matched cell lines
by subset (i.e., the most varying gene subset size, tumor purity inclusion/exclusion, etc.) Consistent with
previous studies, we found pancreatic and lung cancer comparisons to have some of the most variable
correlation coefficients across cell lines, believed to be due to greater heterogeneity within those tumor
types.(10)

Similarly to previous findings in neuroblastoma, our comparisons of GBM PDX models and GBM cell
lines supported that PDX models were significantly more similar than cell lines to their matched disease
context (Figure 2).(46) This is unsurprising, as the PDX model have a microenvironment, vascularization, and
cellular heterogeneity, all critical for recapitulating human tissue.(2,4) However, our study is the first to our
knowledge to further compare PDX and cell line models to a non-disease tissue context. As previously
mentioned, preclinical model recapitulation of non-diseased tissue for non-cancer contexts (e.g., rare diseases)
is likely more informative than tumor recapitulation, due to multiple genomic abnormalities in
malignancies.(44,45) When subsetting only GBM tumor-derived cell lines and PDXs, we found PDX models
and cell lines both correlate highest to GBM-specific tumor tissue, followed by all other brain tumor tissue, and
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then non-diseased brain tissue (Figure 2B). While PDX model profiles correlated significantly higher to brain
tissue regardless of disease context (p < 0.0001, W = 410-455), the range of correlations for specific models
overlapped between PDX and cell lines (rho 0.77-0.89). As found in previous studies and here, cell lines often
exhibit greater transcriptome expression similarity to other tissues than the one from which they were originally
derived.(40) With this in mind, we compared GBM-derived cell lines and PDXs across other tumor and
non-diseased tissue contexts and found GBM cell lines do significantly correlate higher with other tissue
profiles than GBM PDXs across all contexts with the exception of two tumor tissues (adrenal and eye), and five
non-diseased tissues (pituitary, colon, nerve, testis, and ovary) (Figure 2D). Interestingly, the only tissues that
GBM PDXs correlated with higher than GBM cell lines did (though not significantl) were adrenal tumors and
non-diseased pituitary.

To further investigate tissue-specific recapitulation of cell line gene expression profiles across disease
contexts, we procured lists of tissue-specific genes and compared the correlation of cell line gene expression
profiles to their matched tumor and non-diseased tissues based on expression of that tissue’s tissue-specific
gene set.(16,27) This revealed 14 out of 16 tumor tissues had significantly higher correlation to their matched
cell lines compared to their non-diseased tissue (Figure 3A). We found the 100 cell lines with the highest
median correlation values by tissue-specific genes clustered by tissue origin for only a few tissue origins (i.e.,
cell lines derived from brain mostly clustered together as well as lung, Figure 3B). Further, tissues mostly
clustered by disease context (tumors vs. non-diseased), particularly one subclade consisted of only
non-diseased tissue (i.e., brain, lung, small intestine, blood, and stomach). This particular non-diseased tissue
subclade also revealed the lowest correlation rho values, suggesting these tissues may be the most
challenging to recapitulate gene expression profiles in a cell culture model, based on their tissue-specific
genes. Indeed, others have demonstrated the challenge of modeling the tissue context accurately with cell
lines in these tissues, leading to recommendations for patient primary derived cells and organoids for in vitro
studies.(27,44,45,47–49)

We further compared our list of top 100 cell lines by median correlation to previous work by Yu et al.
2019, where they selected the five cell lines with highest correlation for each tumor type studied (110 total cell
lines, 22 tumors) and found an agreement of 24 cell lines (Supplementary Table 4).(10) Cell lines unique to
each study are likely due to differences in the gene subset used for calculating correlation (5,000 most varying
protein-coding genes vs. tissue-specific genes) and then selection of top five cell lines median correlation for
each tissue compared to selection of top 100 median correlation (regardless of tissue). This also underscores
the importance of the gene subset selection for studies. Further, when subsetting for brain-specific genes
rather than full gene sets, we observed a decrease in the correlation between GBM-derived cell line compared
to brain tumor gene expression profiles, brain non-diseased tissue gene expression profiles, and across tissue
gene expression profiles (Figure 2, Figure 4). Correlation values between GBM-derived PDXs and matched
tumors or tissues were very similar when restricting to brain-specific genes versus full gene sets (Figure 2C,
Figure 4A). However, when comparing across other tissues using their tissue-specific genes, GBM-derived
PDXs had lower gene expression correlations than with the full gene expression profiles (Figure 2D, Figure
4B). This suggests that while tissue-specificity is a driver of the gene expression profile correlation between
PDXs and tissues, it is not for cell lines.

When comparing significantly correlated genes between GBM preclinical models and brain tissue or
tumor, we found most significantly correlated genes were exclusive to GBM PDX or GBM cell line to tissue
correlations (Figure 4B). The expression of these genes may confer a better fit of one model type or the other,
depending on the area of research. In particular, we highlight the transcription factors FEV, MAFK, and REST,
whose expression was significantly positively correlated between tissues and GBM PDX models but not
between tissues and GBM cell lines. REST expression has been previously found to be correlated with
immune cell infiltration and immune checkpoints in glioma, and its expression has been recommended
suggested as a biomarker of poor prognosis in glioma.(50) FEV is believed to regulate genes involved in early
brain development and the serotonergic pathway, and MAFK is associated with numerous neurological
disorders through oxidative stress response.(51,52) In contrast, a transcription factor whose expression was
significantly correlated between brain tissues and GBM cell lines but not between brain tissues and GBM PDXs
was MYCN. MYC and MYCN have been found to have specific and different Arf suppression mechanisms and
effects in brain tumors and amplifications are associated with different tumor groups in brain tumors.(53) That
is, recapitulation of MYCN expression in preclinical models could be vital depending on the specific research
question or tumor grade of interest. The exclusive significant correlation of these transcription factors by
preclinical model type underscores the importance in careful model selection.
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To better understand the specific genes driving correlation (and anti-correlation) of models to their
tissue and disease context, we found the genes with the highest correlation, lowest correlation, and
anti-correlation between each GBM model and brain tumors and brain non-diseased tissues (Figure 5).
Functional enrichment analyses by similar studies have previously focused on using differentially expressed
genes in cell lines compared to tumors as input.(9,10,23) While this is important to highlight the biological
terms that are enriched just in preclinical models versus just in patient tissues, we also wanted to identify gene
programs that may be particularly well represented in a model, by looking at overrepresentation of highly
correlated genes between GBM-derived models and brain tumor or non-diseased brain tissue. Interestingly,
some of the top enriched terms for cell lines by positive correlation to non-diseased brain are related to primary
cilia, oxidative phosphorylation, and cellular response to heat shock in brain tumors (Figure 5C). In PDXs, we
observed top enriched terms for positively correlated genes for exercise-induced circadian rhythm for brain
tumors, cell-cell signaling, and ZNF148 transcription factor activity (Figure 5C). Genes with a negative
correlation between cell lines and tumors were enriched for immune pathways, consistent with previous
findings.(10,23) Interestingly, multiple metabolic pathways were negatively enriched between GBM PDXs and
brain tumors as well as non-diseased brain tissues. While PDX models are preferred for drug testing because
of their higher fidelity to patient tumor recapitulation and heterogeneity, they are lower throughput and more
expensive than cell lines and our findings suggest they may not recapitulate all aspects of drug testing better
than cell lines.

There are several limitations to this study. While we removed 66 cancer cell lines from our study that
were known to be problematic in the Cellosaurus (i.e., evidence of contamination or misidentification), other
cancer cell lines included may be misidentified or contaminated but not reported. Another limitation of our study
is that while we assessed how genes associated with tumor purity and tissue-specific expression impact the
global gene expression correlation between cancer cell lines and human tissues, future studies will need to
assess if particular pathways or other gene sets are conserved or not and the impact of other tumor-specific
characteristics like subtype or tumor grade. Finally, given the robust number of GBM cell lines and PDX gene
expression profiles, our comparative analyses between cancer cell lines and PDXs were focused on these.
While we found that GBM PDX models better recapitulated tissue-specific gene expression than GBM cell lines
when correlated with cancer and non-diseased brain tissues, this may or may not be true for cancer cell lines
and PDX models derived from other tissues.

Conclusion
Our findings 1) underscore the importance of using the full gene expression set measured when

comparing preclinical models and tissues and 2) confirm that tissue-specific patterns are better preserved in
GBM PDX models than in GBM cell lines. The latter is not surprising, as these cancer cell lines and PDX
models are from GBM, so restricting tissue-specific gene expression of non-brain tissues should reduce that
correlation. However, given the important role of preclinical models in oncology research, our study suggests
that, at least for brain tumor research, careful consideration of what aspects of tumor gene expression are
reproduced in cancer cell lines compared to PDXs may be critical. Additionally, our study is the first to our
knowledge to compare gene expression correlation of preclinical models across matched tumor and
non-diseased tissues. Future studies can build on these findings to determine the specific pathways and gene
sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.
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Supplementary Figures:

Supplementary Figure 1. A. Principal component analysis scatterplot with density rug plot of gene expression
profiles from cancer cell lines (red), GBM PDX models (teal), non-diseased tissue (green), and tumor tissue
samples (purple) in principal components 1-10. B. Principal component analysis scatterplot with density rug

plot of gene expression profiles from the same groups colored by read length. C. Principal component analysis
scatterplot with density rug plot of gene expression profiles from the same groups colored by tissue type,

regardless of disease state. D. Principal component analysis scatterplot with density rug plot of gene
expression profiles from the same groups colored by the data resource samples originated from. E. Principal

component analysis scatterplot with density rug plot of gene expression profiles of the same groups colored by
sex of the individual that samples were originally derived from.
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Supplementary Figure 2. Split violin plots of the correlation of each GBM cancer cell line and PDX sample to
each non-diseased tissue type by that tissue’s tissue-specific genes.
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Supplementary Figure 3. Histogram of the distribution of Spearman’s correlation rho between A. GBM cell
lines and brain tumor tissue, B. GBM cell lines and brain non-diseased tissue, C. GBM PDXs and brain

non-diseased tissue, and D. GBM PDXs and brain tumor tissue, respectively.
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Supplementary Figure 4. Dot plots of the most significant (top 10 if at least 10 were significant) pathways
represented in insignificant genes with either positive (blue) or negative (red) correlation between A. GBM cell

lines and brain tumor tissue, B. GBM PDXs and brain tumor tissue, C. GBM PDXs and brain non-diseased
tissue, and D. GBM cell lines and brain non-diseased tissue, respectively. Dots are sized by recall or the

proportion of genes from a specific term represented in the data divided by the total genes possible for that
term.
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[SupplementaryTable1_ProblematicSamples.xlsx]:

Supplementary Table 1: Problematic Samples Based on Metadata Mislabeling or Possible
Contamination.
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Supplementary Table 2: Tissue Types Common Between Data Sources.
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Supplementary Table 3: Cancers Represented Between Data Sources.
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Supplementary Table 4: Median Correlation of Each Individual Model Sample to Each Tissue Grouping.
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Supplementary Table 5: Pathway Terms Represented in GOSt Results for Each Gene Set of Interest.
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